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A THEORETICAL STUDY OF THE
DYNAMIC PLASTIC BEHAVIOR OF BEAMS AND PLATES

WITH FINITE-DEFLECTIONS
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Massachusetts Institute of Technology, Department of Naval Architecture and Marine Engineering,
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Abstract-An approximate theoretical procedure is developed herein in order to estimate the permanent trans­
verse deflections of beams and arbitrarily shaped plates which are subjected to large dynamic loads. The influence
offinite-deflections or geometry changes is retained in the analysis but elastic effects are disregarded. The particular
case of a fully clamped rectangular plate acted on by a uniformly distributed dynamic pressure pulse is studied
in some detail. It is observed that reasonable agreement between the theoretical predictions and the experi­
mental results has been obtained for beams (P = 0) and rectangular plates (P = 0·593) which were made from
a strain-rate insensitive material.
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semi-width of plate
internal energy dissipation function per unit length of a plastic hinge
thickness of beam or plate
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semi-length of beam or plate
bending moments per unit length as defined in Fig. 2
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membrane forces per unit length as defined in Fig. 2
uoH
transverse shear force per unit length as defined in Fig. 2
duration of response
initial velocity
permanent transverse deflection
maximum permanent transverse deflection
magnitude of static collapse pressure
external pressures per unit surface area of a plate as defined in Fig. 2
magnitude of dynamic pressure pulse
time
displacements in mid-plane of a plate as defined in Fig. 1
transverse deflection of the mid-plane of a plate or beam as defined in Fig. 1
coordinates lying in the mid-plane of a plate as defined in Fig. I
coordinates defined in Fig. 6
coordinate which is perpendicular to the mid-plane of an initially flat plate as defined in Fig. I
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defined by equation (33)
defined by equation (82)
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Gii direct strain

n

Po

Pc
relative angular rotation rate across a line hinge
curvature

JtV~L2

MoR

mass per unit area of beam or plate
ptan4J
yield stress
duration of a rectangular pressure pulse
angle defined in Fig. 6
defined by equation (35)
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INTRODUCfION

IN REF. [1], Symonds and Mentel investigated the influence of finite-deflections and axial
restraints on the behavior of rigid, perfectly plastic beams loaded impulsively. The authors
observed that the permanent deflections of these beams were considerably smaller than
those predicted by a simple beam bending analysis when the maximum deflections were
of the order of one-half the beam thickness or larger. More recently [2], it has been shown
that bending type analyses (infinitesimal theories) of circular plates loaded dynamically
only predict reasonable estimates of actual permanent deflections which are less than
about one-half the corresponding plate thickness.

It is evident from a literature survey that very few "exact" rigid-plastic solutions
which retain the influence of finite-deflections have been published. Moreover, it is ob­
served that changes in the boundary conditions or external loading of the existing solutions
often introduce enormous analytical difficulties. In order to circumvent the difficulties
encountered in many exact dynamic plastic analyses, Martin presented some bound
theorems in Ref. [3]. Martin's theorems may be used to obtain a lower bound to the actual
response time and an upper bound to the permanent deflections ofa rigid, perfectly plastic
continuum subjected to an impulsive loading. However, these theorems are only valid
for relatively small permanent deflections of a broad class of structures, since the influence
of finite-deflections (geometry changes) have been neglected in their formulation.

A general approximate theoretical procedure, which retains the influence of finite­
deflections, is developed herein for the dynamic behavior of arbitrarily shaped, rigid,
perfectly plastic plates. This analysis reduces to that presented by Sawczuk [4, 5] for the
influence of finite-deflections on the behavior of initially flat rigid, perfectly plastic plates
loaded statically, and provides reasonable agreement with the experimental results on
beams and rectangular plates reported in Refs. [6,7].

BASIC RELATIONS

Consider the orthogonal coordinates xj(i = 1, 2) which lie in the mid-plane of an
initially flat plate of thickness H. If the displacement vector of a point on the mid-plane
of a plate is chosen with components Uj along the Xj axes and w transverse to the plate,
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as indicated in Fig. 1, then the equilibrium equations for finite-deflections of the element
shown in Fig. 2 can be written,t

and

Nij.i+pj-piij = 0

(Qi+Nijw,j),i+P3 -pw = 0

(1a)

(lb)

Qi = -Mji•j (lc)

if rotary inertia is disregarded and the deflections are restricted to moderate values. The
positive directions of the internal forces N ij , external loads Pi and P3' shear forces Qi
and bending moments M ij are defined in Fig. 2.

It may be shown that the associated direct strains

(2a)

and curvature changes
(2b)

are consistent with the equilibrium equations (laH1c) according to the principle of virtual
velocities.

If attention is restricted henceforth to plates with the following boundary conditions
around the outer edges

w=w=o

MIDDLE SURFACE OF AN
INITIALLY FLAT PLATE
BEFORE DEFORMATION

FIG. 1. Middle surface of an initially flat plate before deformation.

(3a)

(3b)

t Commas and dots denote dilrerentiation with respect to spatial coordinates Xj and time, respectively. The
summation convention is employed throughout this article.



1010 NORMAN JONES

NI2

1N
22

i X'

.< 0°2

NI2 dXI
X2

N II-0 dX2
P3r

@---
0, PI

P2 II

@
>

!
(0)

M22 IM'2

••
dXI

MI2
•• dX2 r XI • •

x2
Mil

••

I
(bl

FIG. 2. (a) Forces and (b) moments acting on the middle plane of a plate.

where n; are the components of a unit normal to the outer boundary, and either

Nijn; = 0

or

Ui = u; = 0

then the external work rate is

(!c)

(3d)

(4)DE = L{(P;-j.tUi)Ui+(P3 -j.tw)w} dA.

The area A extends over the entire deformed mid-plane of a plate and may be taken as the
original area for moderate deftections. Substituting equations (ta) and (tb) into equation (4)
gives

(5)
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If it is assumed that the total area A of a plate with a boundary curve of length C consists
of I smaller areas each of area Am and surrounded by a boundary curve of length Cm'
within which Ni}:lj is continuous, then, using Green's Theorem, the first term in equation (5)
becomes

since

A somewhat similar procedure can be applied to the remaining terms in equation (5).
It may be shown that these additional operations allow equation (4) to be recast in the
form

f {(Pi-JlUi)Ui+(P3-jlW)W} dA = - ±i NijiljnidCm
A m=l Cm

+ f Nijuj,i dA + t i Mji,jwnidCm- ±i Mjiw,injdCm
A m=l Cm m=l Cm

(6)

Clearly the transverse deflection wand the transverse velocity W must be continuous
throughout an entire plate made from a homogeneous material. In plates made from a
perfectly plastic material with a yield criterion t/J(Nij , Mij) = const., W,i is continuous
except possibly at any time-independent locations where N ij = O. The time derivative
of the slope (W,i) can be discontinuous at travelling plastic hinges in plates made from a
perfectly plastic material. Moreover, Qi' Mij and Nij must be continuous throughout
an entire plate except possibly when Qi' Mij (i = j) and Nij at a plastic hinge act on a plane
perpendicular to the hinge line.

The above observations and equations (3aH3d) allow equation (6) to be rewritten

f {(Pi-jlUi)Ui + (P3 -jlw)w} dA = - ±i NijUl'i dCm
A m= 1 Cm

+ f Njflj,i dA + ±i (NijW-Mji)w,injdCm
A m=l Cm

-LNij,jWW,i dA +L(Mji-Nijw)w,ji dA . (7)

It may be shown that equation (7) reduces to equation (16) in Ref. [4] which was developed
by Sawczuk for the finite-deflections of flat plates loaded statically. This solution may be
further specialized to give a kinematically admissible collapse load for infinitesimal
deflections.
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APPROXIMATE ANALYSIS

The forces, moments and deflections appearing in equation (7) are interconnected by
a function <l>(Nij' M ij , Ui' w) = const. which controls the yielding of a perfectly plastic
material. Thus, if the finite-deflection terms are retained in equation (7) then it is difficult
to obtain the load-deflection behavior for static loads or the deflection-time history for
dynamic loads. In order to simplify (7) it might be noted that it is usually reasonable
to neglect the influence of Ui and iii compared to wand wwhen Pi = O. Thus, using equa­
tion (ta), equation (7) in this case becomes

The first term on the right hand side of (8) gives the internal energy dissipated at any
travelling plastic "hinges" while the remaining term in (8) is the energy dissipated in con­
tinuous deformation fields. If the deformation field has no discontinuities in W,i across
the curves Cm then, in order to satisfy equations (3a) and (3b), the first term in (8) vanishes.
Nevertheless, even with these simplifications, equation (8) is difficult to solve except for
particular cases in which the directions of principal stresses are known, i.e. beams and
axisymmetrically loaded circular plates. However, some members of this class ofstructures
have been studied using other methods of solution [1,2, etc.]. It is of principal interest
in this article to develop an approximate procedure which may be used in order to predict
the dynamic behavior of non-axisymmetric plates for which no solutions exist except the
special case ofa simply supported square plate [8].

Sawczuk [4,5] examined the static behavior of a flat plate by dividing it into a number
of rigid regions which were separated by time-independent hinges situated at locations
where discontinuities in W,i and W,i occurred. This procedure is clearly only approximate
but it permitted Sawczuk to analyze the post yield behavior of rectangular plates loaded
statically. Sawczuk and Winnicki [9] conducted some experiments on rectangular rein­
forced concrete plates and obtained rather good agreement with the predictions of the
theoretical procedure developed in Refs. [4, 5]. It is evident from infinitesimal plasticity
analyses that the shape of the displacement field of a beam or plate for small dynamic
loads is the same as the static collapse velocity profile [8, etc.]. Moreover, the experimental
results reported in Ref. [7] indicate that the permanent deformed profiles of rectangular
plates loaded dynamically are similar to the shape of the velocity field used by Wood [10]
in order to calculate the minimum upper bound to the collapse pressure of the corres­
ponding static problem. Thus, in view of these observations and in order to simplify the
study of non-axisymmetric plates, the approximations introduced by Sawczuk [4] for
the static behavior of plates will now be incorporated into equation (8) to give

f (P3-JLw)wdA = ±i (Nijw-Mji)W,injdCm
A m= 1 em

(9)

where Cm are time-independent. Equation (9) reduces to the solution obtained by Sawc­
zuk [4] for static finite-deflections and gives a kinematically admissible solution for the
infinitesimal behavior of a plate or beam loaded dynamically.
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If a flat plate is divided into a number of rigid regions separated by p straight line
hinges, each of length I"" then equation (9) further simplifies to

f (P3-jlw)wdA = f f (Nw-M)O",d/",
A "'=lJ~

(10)

where w, on the right hand side of equation (10), is the transverse deflection at the hinge.
The stresses at the hinge due to the axial force N and bending moment M act on a plane
which is parallel to the hinge and transverse to the mid-plane of the plate. 0", is the relative
angular rotation rate across the hinge.

It is convenient to define

D = (Nw- M)O", (11)

(12a)

which is the internal energy dissipation per unit length of a hinge. Clearly, the dissipation
function D will depend on the type of supports around the boundary of a plate and on
the yield condition which is selected. If the maximum normal stress yield criterion is
chosen, then, in order to satisfy the normality requirements of plasticity and the Euler­
Bernoulli assumption we have

(
W2) W

D = Mo 1+4H2 0", when H ~!

and

wnw 1
D = 4M0 H U", when H ~ 2" (12b)

for a hinge in a beam or plate with simply supported edges. On the other hand, if a hinge
is located in the interior of a beam or plate with clamped edges, then

D = Mo( 1+ ~:)o", when ~ ~ 1 (13)

while equation (12b) now holds, provided w/H ~ 1. Equations (12) and (13) remain valid
for hinges which are inclined at any angle to the supports of a plate.

It should be remarked that equation (10) was derived for an arbitrarily shaped plate
having boundary conditions which satisfy equations (3aH3d). However, since equa­
tion (10) may be interpreted as an energy balance it can be used for plates which have other
edge conditions. In this case it might be necessary to allow plastic hinges to form around
the boundary of the plate as well as in the interior.

If a kinematically admissible collapse mechanism with straight line hinges is postu­
lated, then equation (10), combined with the appropriate relation for D, may be solved
to give an estimate of the influence of finite-deflections on the deflection-time history of
a non-axisymmetric rigid, perfectly plastic plate loaded dynamically. As noted in the
previous discussion it is believed that, for moderate values of permanent deflections,
the static collapse velocity profile would be a reasonable choice for the displacement
field in the corresponding dynamic problem. Clearly, because no uniqueness or bounding
theorems have been proved herein, it is impossible to know whether the predictions of
equation (10) using a particular displacement field are smaller or larger than the exact
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solution. However, this uncertainty is characteristic of most studies into the influence of
finite-deflections on the behavior of structures loaded either statically or dynamically.
Nevertheless, the results predicted by equation (10) for the cases discussed in the next
section are considerably closer to the corresponding experimental values than are the
estimates obtained using infinitesimal theories and should be fairly reliable in other
cases, provided physically reasonable displacement fields are selected. It is believed that
these predictions should be sufficiently accurate to enable designers to make preliminary
design decisions. The numerical procedures of Ref. [11, etc.] could then be used in order
to obtain further details of the final design which may be required.

DYNAMIC BEHAVIOR OF A BEAM

Consider the simply supported rigid, perfectly plastic beam of length 2L and thickness
H which is indicated in Fig. 3. The beam is subjected to a uniformly distributed dynamic
load which has the pressure-time history shown in Fig. 4. This external loading may
be expressed in the form

P3 = Po for 0 $; t $; r (14a)

and

P3 = 0 for r $; t $; T (14b)

UNIFORMLY DISTRIBUTED PRESSURE

I

FIG. 3. Simply supported beam.
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FIG. 4. Dynamic pressure pulse.
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where rand T are the durations of the pressure pulse and the beam response, respectively.
If it is assumed that the shape of the displacement field due to dynamic loads which produce
finite-deflections is the same as the velocity profile developed for the corresponding static
collapse load, then

(15a)

and

provided 0 ~ x ~ L.
Now, substituting equations (12a), (14a) and (15a) into (10) gives

WI +hwi = d

where

O~t~r

WI 1
-<-H - 2

h = 6pc
JlH2

d = 3Pc('1_1)
2Jl

2Mo
Pc = [;2

'1 = Po
Pc

and

(15b)

(16)

(17a)

(l7b)

(17c)

(17d)

A solution to equation (16) may be obtained using the method of successive approxima­
tions. Thus, when using a second approximation to the solution of equation (16) which
satisfies the initial conditions w = W= 0 at t = 0, it may be shown that

and

at the end of the first stage of motion (t = r), where

WI = d;2(1-h:;4) (18a)
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Wt = d!( 1-h~4) . (18b)

A study of the second stage of motion (! ::s; t::s; T) proceeds in a manner similar to that
outlined above for the first stage, but with the initial conditions w = W= 0 replaced
by (18a) and (18b), and with" = O. It may be shown that the maximum value of the trans­
verse deflections of the permanently deformed beam is

Wm = Ps+p +(PI-P~)p2 PSP7p
3

_ (PtPs+p p2)p
4

_PIP7P
S
_ fJip

6
(19)

H fJ6 7P 2P6 3 fJ6 6 7 12 20 120fJ6

where

T-!
P=-­

!

is the smallest root P ~ 0 of the polynomial equation

_fJtP
S

_fJtfJ2p
4
_(fJs+fJtfJ~)p3 fJ2fJ p2+(I-fJ4)p+fJ2 = 0

20 4 3 s .

Equation (20) is obtained from -the requirement that w= 0 at t = T, and

9/,4
fJt = -~

"P2 = (1- ,,)(1- fJ3)

9(" -I)/,4
fJ3 = 20,,4

9/,4 (fJ ) 2fJ4 = __(,,_1)2 1-~
4,,4 3

9/,4 (fJ )Ps = 2,,4 (" -1) 1- 3
3

6/,2
fJ6 =-2

"
fJ - fJlfJ2

7 - fJ6

and

(20)

(21a)

(21b)

(21c)

(21d)

(21e)

(2lf)

(21g)

(21h)/' = Po!
(JlHpJ!

As remarked previously, equation (19) remains valid provided W",/H::s; t. If it is
assumed that w/H exceeds one-half when t ~ !, then the first stage of motion given by
equations (16HI8b) remains unchanged, while the second stage remains valid until
t = t2, when w/H = t. Thus, the non-dimensionalised time P2 = (t2- !)/! may be found
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from equation (19) with W"jH = -t while the corresponding transverse velocity of the
beam is

w= w2 ( I-I)
where W2 is obtained by observing that the left hand side of equation (20) with P = P2

equals W2 /(Jr). Now all subsequent behavior of the beam will have w/H ~ t at the
centrally located plastic hinge. Thus, it is necessary to consider a third stage of motion
which is governed by the dissipation relation (12b). It is straightforward to show that the
permanent shape of the beam is

d= ~{I+~6(~rr(I-I) (22)

provided 0 ~ x ~ L, W2 ~ 0 and a= - 3Pc/2p..
The foregoing analysis is simplified considerably when employing the square yield

condition shown in Fig. 5, for which the corresponding dissipation relation is

(23)

(24)

It may be shown, when using (23), that the permanent shape of a simply supported beam
loaded with a uniformly distributed rectangular pressure pulse is

d= ~[{2"("-I)(I-COS(hHr2)t)+ 1}t- 1J(I-I)'

M
Mo

1.0

SQUARE
YIELD CURVE

N
No

MAXIMUM NORMAL
STRESS
YIELD CURVE

-1.0

FIG. 5. Yield curves.
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Equation (24) reduces to

WJ = ~[(1+3A)t-l](1-~)
H 4 L

(25a)

(25b)

for impulsive loadings when Por = Jl Vo and

JlV~L2

A = MoH'

A beam with fully clamped ends and subjected to a uniformly distributed rectangular
pressure pulse may be analyzed in the same manner as that described above for the simply
supported case. The corresponding predictions for the clamped cases are presented in
Appendices A and B.

DYNAMIC BEHAVIOR OF A RECTANGULAR PLATE

(26a)

Consider a rigid, perfectly plastic rectangular plate of length 2L and width 2B which is
fully clamped around the outer boundary as indicated in Fig. 6. The plate is subjected
to a uniformly distributed dynamic load with the pressure-time history shown in Fig. 4
and described by equations (14a) and (14b). It is assumed that the shape of the displacement
field for the dynamic case is the same as the velocity profile used by Wood [10] to give
an upper bound to the collapse load of the corresponding static problem. Thus,

lV;(B tan c/> - x')
W=

B tan c/>

for region I
and

lV;(B- y)
W= B (26b)

for region II. Regions I and II are indicated in Fig. 6 and i = 1 refers to the deflections
during the time interval 0 ~ t ~ r, while i = 2 corresponds to r ~ t ~ T.

y

I '" TI
II

I

28

I 1I HINGE LINES

I

2L -\

---->-----+-oy---~-

I~
FIG. 6. Plastic hinge line pattern in a fully clamped rectangular plate subjected to a uniformly distributed

transverse pressure.
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If equations (13), (14a), (26a) and (26b) are substituted into equation (10) then it may
be shown that

where

and

h _Pc(4~~-11~o+9)
I - 3J1.H2(2-~o)

d
l

= Pc(,,-1)(3-~o)

J1.(2-~o)

12Mo

Po,,= -
Pc

~o = ptan 4>

BP=­L

(27)

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

provided W1/ H ~ 1and 0 ~ t ~ T. Ifequation (27) is solved using the method of successive
approximations then a second approximation to the exact solution which satisfies the
initial conditions w = W= 0 at t = 0, gives equations (18a) and (18b) at t = T provided
hand d are replaced by hi and dl , respectively.

The second stage of motion (T ~ t ~ T) may be studied in a manner similar to the
method outlined for the first stage but with" = 0 and the initial conditions replaced by
the appropriate equations which correspond to (18a) and (18b). It may be shown that
the maximum value of the transverse deflections of the permanently deformed plate and
the response time are given by equations (19) and (20), respectively. In the present case
the constants Pi' where i = 1,2, ... ,7, must now be evaluated by replacing the beam
coefficients (17aHI7d) by the plate coefficients (28aH28d), respectively.

It was remarked previously that the analysis outlined above remains valid provided
W"jH ~ 1. If this inequality is violated then the internal energy dissipation is governed
by the dissipation relation (12b) in those portions of the hinge lines which have transverse
deflections greater than the plate thickness. Thus, a time-dependent rectangular shaped
boundary travels outwards from the central line hinge towards the edge of a plate. This
boundary always has a deflection w = H and divides the plate into two regions: an outer
zone which has w < H and an inner zone with w > H. The internal energy dissipation in
the outer region is controlled by equation (13), while equation (12b) governs the behavior
in the remainder of the plate. If the response of the plate is divided into three stages as
described for the beam studied previously, then it may be shown that the maximum per­
manent deflection Wm is given by the root of the transcendental equation

(29)
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4I'2{ (l-eof }
/3s = -2 1+ 2 e

'1 - 0
(30a)

(30b)

(31)

The non-dimensionalised velocity of the plate centre at the end of the second stage of
motion ~t/H equals the left hand side of equation (20) multiplied by /3t1/36' while the
non-dimensionalised duration of the second stage [i.e. p = (t 2 - t)/t] is obtained from
equation (19) with W"./H = 1. Clearly the values of /3i (i = 1,2, ... ,7) in these equations
are evaluated using (28aH28d), which correspond to the rectangular plate.

The dissipation relation (23) derived for a square yield curve simplifies considerably
the analysis for the dynamic behavior of a fully clamped rectangular plate with finite­
deflections. It may be shown that the duration of response of the plate is

T 1[ -1{ '1 sin(y.) }]
= y tan '1 cos(y.)+ 1-'1

and that the maximum permanent deflection is

where

Equation (32) gives

Wm = (3 _ e ){[1 + 2'1('1- 1){1-cos(y.)}]t -1}
H 0 2{1 +(2-eo)(l-eo)}

Wm (3- eo){(l +r)t -I}
Ii = 2{1 +(eo-1)(eo-2)}

(32)

(33)

(34)

(35)

for impulsive loadings (l = Po. = j.LVo) where A, eo and /3 are defined by equations (25b),
(28e) and (28f), respectively, and

A/32 ( 1 )r = -(3-2eo) l-eo+-- .
6 2-eo

A simply supported rectangular plate which is subjected to a uniformly distributed
rectangular pressure pulse may be analysed in the same manner as outlined above for the
fully clamped case. The corresponding predictions for a simply supported rectangular
plate are presented in Appendices A and B.

DISCUSSION

The approximate procedure outlined in this article has been used to predict the per­
manent transverse deflections (W"./H) presented in Figs. 7-11 for fully clamped rectangular
plates which are subjected to uniformly distributed dynamic pressure pulses. It is evident
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FIG. 7. Maximum permanent transverse deflection vs. a non-dimensionalised impulse parameter for a
fully clamped beam (p = 0) which is subjected to a uniformly distributed dynamic pressure:---bend­
ing only theory for an impulsive pressure; - - - - finite-deflection analysis for an impulsive pressure
using a square yield curve; --- finite-deflection anil1ysis for a dynamic pressure (1/ = 100) using a
maximum normal stress yield curve. Experimental results on wide AI 6061-T6 beams which are subjected
to a uniformly distributed impulsive pressure (1/ -+ 00)[6]: <> 2L/H = 56·7; o2L/H = 41·35; L2. 2L/H =

26-7; 0 2L/H = 20·5.

20050
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FIG. 8. Maximum permanent transverse deflection vs. a non-dimensionalised impulse parameter for a
fully clamped rectangular plate (p = Q.593) which is subjected to a uniformly distributed dynamic
pressure; --- upper bound to bending only theory for an impulsive pressure, equation (10) of [7);
---- finite-deflection analysis for an impulsive pressure using a square yield curve; --- finite­
deflection analysis for a dynamic pressure (1/ = 100) using a maximum normal stress yield curve.
Experimental results on rectangular plates (2L = 5·0625in.,2B = 3in.,p = Q.593)madefromAI6061-T6
and subjected to a uniformly distributed impulsive pressure (1/ -+ 00) [7): 0 H = Q.122 in.; 0 H =

Q.188 in.; L2. H = 0·244 in.
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from Figs. 7 and 8 that the estimates which were obtained using the maximum normal
stress yield criterion for beams (P = 0) and rectangular plates with p= 0·593 agree
reasonably well with the corresponding experimental values. It should be noted that the
experimental results plotted in Fig. 7 were recorded on wide beams. However, it is shown
in Ref. [6] that the permanent deflections of wide beams or rectangular plates which are
clamped on two opposite edges and free on the remaining two sides are almost independent
of the aspect ratio. The test specimens used in the experiments reported in Refs. [6, 7]
and presented in Figs. 7 and 8 were made from AI 6061-T6 which may be regarded
as insensitive to strain-rate up to 103 in./in./sec [12] and were subjected to uniformly
distributed impulsive pressures (" -+ 00).

It may be shown that the square yield curve indicated in Fig. 5 circumscribes the corres­
ponding maximum normal stress yield curve while another with dimensions 0·618 times
as large would inscribe it. Thus, the "upper bound" results in Figs. 7-10 were predicted
by a theoretical solution using a square yield curve which circumscribes the maximum
normal stress yield curve, while the "lower bound" values shown in Figs. 7 and 8 correspond
to an inscribing yield curve.

It is evident from Figs. 9 and 10 that, for a given value of impulse, the permanent
transverse deflection of a beam or plate is essentially independent of the magnitude of
" when" is larger than 100.
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I I

FIG. 9. W..,/H vs. l' predicted by a square yield curve solution for a fully clamp.ed beam (P = 0) and a
fully clamped rectangular plate (P = 0·25) which are subjected to uniformly distributed dynamic

pressures.
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FIG. 10. W,.jH vs. l' predicted by a square yield curve solution for fully clamped rectangular plates
with fJ = 0·5 and fJ 1 which are subjected to uniformly distributed dynamic pressures.

All the theoretical results presented in this article were obtained by assuming that
angular changes across the plastic hinges were sufficiently small so that tan (J could be
replaced by () rad. This simplification provides a good approximation when the L/H ratio
ofa beam is large or the value of W",/H is not too large. Moreover, only the second approxi­
mation was retained in the series solution ofthe differential equation which was encountered
in the analysis employing the maximum normal stress yield criterion. It would be necessary
to consider additional terms for large W",/H ratios and for cases in which the dynamic
pressure to static pressure ratio (,,) is small.

The theoretical work presented herein utilizes time-independent displacement profiles
which have a shape similar to the corresponding static collapse fields. Keil [13] has indi­
cated, however, that the deformed shapes ofcircular plates loaded dynamically are different
to those loaded statically. Furthermore, the results presented herein only apply to plates
made from strain-rate insensitive materials. Various authors have shown that it is necessary
to retain this affect for strain-rate sensitive materials such as mild steel [14, etc.].

The approximate procedure discussed in this article could be used to examine the
influence of large transverse dynamic loads on the behavior of beams and plates which have
any shape and support conditions. It would be necessary when studying the dynamic



1024 NORMAN JONES
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FIG. II. Variation of W.,jH vs. l' predicted by a maximum normal stress yield curve solution for fully
clamped rectangular plates with various values ofpwhich are subjected to uniformly distributed dynamic

pressures ('I = 1(0).

behavior of certain plates to permit continuous deformation fields. This may be
accomplished by retaining the last integral on the right hand side of equation (8).

Finally, it should be remarked that the predictions of rigid, perfectly plastic analyses
are thought to be useful when the external dynamic energy applied to a structure is about
ten times larger than the amount of energy which could be absorbed by the structure in a
wholly elastic manner [15].

CONCLUSIONS

An approximate theoretical procedure is developed herein in order to estimate the
permanent transverse deflections of beams and arbitrarily shaped plates which are sub­
jected to large dynamic loads. The influence of finite-deflections or geometry changes is
retained in the analysis but elastic effects are disregarded. The particular case of a fully
clamped rectangular plate acted on by a uniformly distributed dynamic pressure pulse
is studied in some detail. It is observed that reasonable agreement between the theoretical
predictions and the experimental results has been obtained for beams (fJ = 0) and rect­
angular plates (fJ = 0·593) which were made from a strain-rate insensitive material.
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APPENDIX A

The procedure outlined in the main text may be used to study the influence of uniformly
distributed pressure pulses on the dynamic behavior of beams and rectangular plates
which are either simply supported or fully clamped at the supports. It will be shown in
this section how the results for these particular cases may be expressed in a common form
when the beams and plates are made from a rigid, perfectly plastic material which yields
according to maximum normal stress yield condition.

(a) Simply supported beams and plates with W"jH ~ t andfully clamped beams and plates
with W"jH ~ I
It may be shown that the maximum permanent transverse deflection for all cases is

(AI)

where the non-dimensionalised duration of the second stage (P) is the smallest root for
which p ~ 0 of the polynomial equation

(A2)
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where

f31 = har4 (A3a)
...L-

f32 = WI (A3b)ar
hdr4

f33 = 20 (A3c)

f3 - hWi (A3d)4 - a

f3 - 2 (A3e)5 = hWlr

f36 = hHr2 (A3f)

f37 = f31f32 (A3g)
f36

W = dr
2
(1- f33) (A4a)

I 2 3

WI = dr(l- f33) (A4b)

'7 = Po (A4c)
Pc

eo = f3 tan cjJ (A4d)

tan2 cjJ = 3-2eo (A4e)

f3=~ (A4f)
L

and d, h and Pc are selected from Table 1 for the appropriate case, while ais equal to the
corresponding parameter d with '7 = O.

TABLE 1

Simply supported Simply supported Clamped Clamped rectangular
beam rectangular plate beam plate

d
3pcl'l-I) Pc('1- 1)(3 - ~o) 3Pc('1- I ) Pc('1- 1)(3 - ~o)---

21J 1J(2- ~o) 21J 1J(2-~o)

h
6pc 4pcP - ~o+2(1- ~0)(3 - 2~0)} 3pc PcP - ~o+2(1- ~0)(3 - 2~0)}

IJH2 31JH2(2 - ~o) 2IJH2 31JH2(2 - ~o)

2Mo 6Mo 4Mo 12Mo
Pc U B2(3-2~0) U B2(3-2,0)

(b) Simply supported beams and plates with W"jH ~ t and fully clamped beams and plates
with W"jH ~ 1



A theoretical study of the dynamic plastic behavior of beams and plates with finite-deftections 1027

The results obtained during the first two stages of motion for these particular cases
may be expressed in a single form, while the behavior during the third stages must be
considered separately. Thus, the velocity W2 at the end of the second stage of motion is

W2 /3 2 /3 /3 /32)P~ /31/32Pt /31P~ AS)J7: = /32+(I-/34)P2-/32 5P2-( 5+ 1 2 3 --4--20 (

where the non-dimensionalised duration of the second stage (P2) is the first root for
which P2 ~ 0 of the polynomial equation

X = /35+/3 +(/31-/3;)P~ /35/37P~_(/31/35+/3 /32)pt_/31/37P~_ f3ip~ (A6)
/36 7P2 2/36 3 /36 6 7 12 20 120/36

X = t is used for simply supported beams and rectangular plates, while X = I corres­
ponds to fully clamped beams and rectangular plates. The constants /3;(i = I, ... , 7),
W1 , W1 , Y/, ~o, cP, d, h, Pc and J are defined in part (a) of the Appendix.

It may be shown that the permanent transverse deflection is

~ = ~{I+~6(~r r( I-I) (A7)

for a beam with simply supported edges, and

for a beam with clamped edges. The maximum permanent transverse deflections are given
by the roots of the transcendental equations

(A9)

and

(A 10)

for rectangular plates with simply supported and fully clamped edges, respectively, where

(All)

and

(AI2)

and Pc is given in Table 1.
It may be shown that the various predictions for the rectangular plates given by equa­

tions (AI), (A9) and (AIO) reduce to the corresponding results for beams of length 2B
when /3 -+ O. For convenience of presentation, the results in Fig. 7 for the case /3 = 0
correspond to beams of total length 2L between the supports.
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APPENDIX B

(Bl)

The permanent transverse deflections and response times of simply supported or
fully clamped beams and rectangular plates subjected to uniformly distributed pressure
pulses are presented in this section. The beams and plates are made from a rigid, perfectly
plastic material which yields according to the square yield condition illustrated in Fig. 5.

(a) Beams

It may be shown, when using the dissipation relation (23), that the permanent transverse
deflection is given by equation (24) when a beam is simply supported, and by

i = t[{1+2,,(,,-I)[I-COS(YIT)]}t-1J( I-i)
if a beam is clamped, where

2 12Mo
Yl = p.HL2·

The duration ofresponse of both simply supported and fully clamped beams is

(B2)

(B3)T 1 -1{ "sin(YIT) }= -tan
Yl l-"+"COS(YIT)

where" is defined by equation (17d) and the appropriate value of the collapse pressure
Pc is given in Table 1.

If the dynamic pressure pulse is considered to be impulsive (PoT = p.Vo) then the
permanent transverse deflection of a simply supported beam is given by equation (25a)
and is

(B4)

for the corresponding fully clamped case. The duration of response is

1 1 (3A)t-tan- 1(3A)t and -tan- 1 -

Yl Yl 4

for the simply supported and clamped cases, respectively. The non-dimensionalised impulse
parameter A is defined by equation (25b).

(b) Plates
The maximum transverse deflection of a simply supported rectangular plate is

Wm (3 - eo)[{1 +2"(,, -1)(I-cos YT)}t -1]
li= 4{1+(I-eo)(2-eo)}

(B5)

where ", eo and Y are defined by equations (28d), (28e) and (33), respectively, and Pc is
given in Table 1. Equation (32) gives the maximum permanent deflection ofa fully clamped
rectangular plate, while equation (31) gives the duration of response for both simply
supported and fully clamped rectangular plates provided the appropriate parameters
are used.
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A theoretical study of the dynamic plastic behavior of beams and plates with finite-deftections 1029

If the duration of the dynamic pressure pulse (t) is sufficiently short so that the loading
might be considered as impulsive (i.e. Pot = jlVo, where Vo is the initial plate velocity),
then the maximum permanent deflection for a simply supported rectangular plate is

Will (3-eo)[(l+4r)t-l]

H 4{1+(eo-2Heo-l)}

while equation (34) gives the corresponding result for a fully clamped plate. The duration
of the motion is

1
T = - tan -1(2rt )

y

for a simply supported rectangular plate

and

1
T = - tan - l(rt )

y

for the fully clamped case, where r is defined by equation (35).

(Received 26 June 1970; revised 16 November 1970)

(B7)

(B8)

A6cTpaKT-OnHCblBaeTCII npH6JIHlKeHHblli. TeopeTH'IecKHli. npol.{ecc, C l.{eJIblO Ol.{eHKH OCTaTO'lHblX

nonepe'lHbIX nporH60B 6aJIOK H nnaCTHHOK npoH3BOJIbHOli. ljIopMbI, KOTopble nO,QscpralOTCII ,Qeli.cTBHIO

60JlbMHX ,QHHaMH'IecKHX Harpy30K. 8 aHaJIHJe Y'IHTblBaeTCII BJIHIIHHe KOHe'lHblX nporH60B HJlH H3MeHeHHli.

reoMeTpHH, nOKa KaK ynpyrHMH :JCIH!IeKTaMH npeHe6peraIOTclI. Hl;CJIe,QyeTclI nO,Q06Ho '1aCTHbiit cJIy'lali.

nOJlHO 3all.{eMJleHHoit npllMoyrOJIbHoit nnaCTHHKH, nO,QBeplKeHHoit ,Qeli.CTBHIO paBHOMepHO npHJlOlKeHHOro

HMIIYJlbCll ,QHHaMH'IecKoro ,QaBJIeHHII. Ha6J1IO,QaeTCII yMepeHHalI CXO,QHMOCTb MelK)l.y TeoPeTH'IecKHMH

npe,QClCaJaHHIIMH H 3KcnepHMeHTaJIbHblMH pe3YJlbTaTaMH )l.Jl1I 6aJIOK (P = 0) H npllMoyrOJIbHblX

nnaCTHHOK (p = 0,593), H3TOTOBJIeHHblX H3 MaTepHaJIa He'lYBCTBHTeJlbHoro K CICOpocTH ,QeljlopMaI.{HH.


